) P 7 meraadnUL PAGE IS //?0

OF POOR QUALITY

Final Report on NASA-Ames grant

NAG-2-487
Architectures for Reasoning in Parallel

AmES
G PAMT
SN -6 2-C/2
Lawrence O. Hall B —
Intelligent Systems Laboratory 256 73 7
Department of Computer Science and Ingineering 3 70

University of South I'lorida
Tampa, I'l. 33620

1 Summary

The research conducted has dealt with rule-based expert systems. The algorithms that
may lead to eflective parallelization of them have beerr investigated. Both the forward
and backward chained control paradigms have been investigated in the course of this
work. The best computer architecture for the developed and investigated algorithms has
been researched.

In the Intelligent Systems Lab at the University of South Florida, two experimental
vehicles have been developed to facilitate this research. They are Backpac, a parallel
backward chained rule-based reasoning system and Datapac, a parallel forward chained
rule-based reasoning system. Both systems have been written in Multilisp [26], a version
of Lisp which contains the parallel construct, future. Applying the future function to a
function cause the function to become a task parallel to the spawning task. Backpac has—
also been ported to MUL-T [32], Common Lisp [59], and C. These systems originally
run under a simulator developed at MCC [38].

Additionally, Backpac and Datapac have been run on several disparate parallel pro-
cessors. The machines are an Encore Multimax with 10 processors (and one with 8

processors), the Concert Multiprocessor with 64 processors, and a 32 processor BBN —_ .
(NASA-CR-136277) ARCHITECTURES FNR N9O-14835 ’
KFASONING IN PAPALLFL Final Report
(Univoarsity of South Floriga) 37 p CSCL 09R

Unclzas
G3/e2 (0236759

" GP1000. Both the Concert and the GP1000 are switch-based machines. The Multimax
has all its processors hung off a common bus. All are shared memory machines, but
have different schemes for sharing the memory and different locales for the shared mem-
ory. The main results of 6:ur7nvestigations come [rom experiments on the 10 processor
Encore and the Concert with partitions of 32 or less processors. We have some initial
results from the BBN, but they are not definitive at this time.

Additionally, experiments have been run with a stripped down version of EMYCIN
[57]. The original parallel system called EMY [38], has had its performance in simulations
described in the literature. Our work with it has been on true parallel processors. The
need for load balancing rules and being judicious in the use of and/or parallelism has
become apparent from experiments on the Encore and Multimax.

The real-world knowledge bases that were used were a 64-rule knowledge base which
could diagnose the cause of fevers and a 99 rule knowledge base on gem identification.
In addition, our group generated a number of fictional knowledge bases which contained
no real knowledge. Instead they contained large numbers of rules structure in desired
formats. The rationale for this was to empirically examine the limits of parallelism in

the paradigms.

1.1 Backpac

This s&st_gm is conceptually very much like EMYCIN. The advantage of it is that the
same functionality and spirit does not have to be maintained, as it is not the same. It

is also a somewhat simpler model. Questioning the user has been ignored in our studies

thus far. o =
Parallelism can be used in evaluating rules and in evaluating clauses. We found
no benefit in evaluating clauses of rules in parallel in general. The biggest benefits

from parallelism were in grouping goal rules together and evaluating groups of them as

separate tasks. This is especially effective on the Concert, where speed increases as high

ORIGINAL PAGE IS
0 OF POOR QUALITY

as 17 on 20 processors were observed. It is not as effective on the Multimax architecture.
In fact, clustering goal rules has a negligible effect for a number of generated knowledge

bases on the Multimax.

1.2 Datapac

Any forward chained system must be put into the context of the OP35, etc. [9] systems.
These systems make use of the highly efficient RETE [8] pattern matching algorithm
and are widely used. They follow the match, recognize and act control cycle. They
are truly data-driven, as changes to working memory drive the system. Parallelism in
these systems has been investigated by a number of researchers [41, 14, 11,13, 14, 35].
The initial results were not encouraging showing less than an order of magnitude speed-
up to be possible from the use of parallelism. Later results have both empirically and
theoretically shown that more than one order of magnitude, but less than approximately
64 times speed-up may be achieved.

It turns out that in these systems match will take up to 90% of the time. The
match component becomes the most important to parallelize and it has shown some
definite limitations in that respect. Hence, our examination has taken a somewhat
different direction. We have concentrated on the structuring of the rules in attempting
to parallelize such a system. In a system which chains there is a hierarchy of rules.
That is, some rules must be fired before others can be. Datapac makes use of the
hierarchy information in pruning the set of possible rules at any given time. There is no
explicit synchronization of the rules in the system, as in the OPS match, recognize and
act cycle. Tt is not as efficient at matching patterns as the RETE algorithm and does
not currently allow rules to fire multiple times. Working memory is distributed among
processors in this model with a global working memory containing all the information
derived. Individual rule processors will only have some needed subset of the overall

working knowledge.

It is functionally limited in comparison to OPS systems, which are truly rule-based
programming languages. Datapac is simply an expert systems tool (though it lacks most
features that a tool would have). The system has been investigated less deeply than the
backward chained systems. Order of magnitude speed increases have been observed on

the Concert with approximately 100 rules on family relationships.

1.3 The outlook

Some issues that affect research in this area are the availability of real knowledge bases.
Many of them are proprietary. The parallel Lisps are in general not very fast. This is
certainly true of Multilisp, which does not have a true compiler and BBN’s Lisp which
does (yet can take 1/2 hour to load a 50 rule knowledge base, which can be loaded
in seconds in Common Lisp on SUNS). All the features one would like do not exist in
current parallel Lisps, such as spin locks, threads as opposed to tasks, separate memory
locations, etc. However, this is changing and will get better in the future. Top Level Lisp
and Lucid both have recently come out with parallel Lisps which have good performance
and some nice tools.

The parallel machines in existence are not mature and may not provide the kind of
performance that they will in the future. Tools to determine what is happening in a
paralle] program and where the bottlenccks exist are largely non-existent, but extremely
important. The C language provides access to most of the existing features of parallel
machines and is much faster than most of the parallel Lisps. For this reason it makes
a viable vehicle for this type of research [14]. It has proven possible to build expert
systems in languages such as C and of course in C, which is why we have begun using a
C based system to examine the possibilities with the Backpac system. It is clearly not
in the class of Lisp for developing intelligent systems. The parallel Lisps should catch
up to C as the sequential ones have.

It is clear that parallelization of expert systems (and one might also claim intelligent

systems) can provide speed increases. In forward chained systems it is important to get
around the limitation of so much time being spent in the match phase. The Datapac
system does not spend so much time on match. [Towever, it has other characteristics
v-vhich must be further investigated before one can make a good comparison to OPS
based systems. The incorporation of hierarchy information into OPS based systems
(such as is done in Datapac) may provide a way of decreasing the percentage of time
spent on match. Recent results from IJCAT-89 [41] suggest that saving less state than is
done by the RETE algorithm may allow less percentage time to be spent in the match
phase, also. Hence, more progress in speed increases in forward chained systems seems
possible. At the current time, 64 processors would be the maximum needed in a machine
to be used for parallel forward chained expert systems.

For backward-chained systems the picture is maybe less clear than the forward
chained systems. The major bottleneck here is working memory, again. Currently,
there are no definable limits on-the speed-up that may be achieved. We have not made
an extensive study of actual knowledge bases, but it is likely that their general structure
will provide limits. Instead, we have concentrate on trying to determine general limits
based on the structure of knowledge bases. The results have been mixed. It seems that
careful attention to load balancing and the structure of knowledge base will allow the
tuning of parallelism to provide better performance than we have currently obtained.
Also, it is clear that spin locks on working memory are needed. This is an arca of great
contention, but the time spent modifying it is small. We have not had the capability to
effectively implement spin locks in our Multilisp systems. It is also important to parti-
tion working memory, when it is possible. Ilowever, this is difficult to do in Multilisp
(and we believe non-packaged Lisps in general). Lisp will provide different cons cells, but
end up pointing them to the same memory location, which of course is where contention
can occur.

It seems certain that order of magnitude speed-ups can be observed for some knowl-

edge base structures, if one discounts the fact that most backward chained systems ask
the user for information. This is clearly a sequential bottleneck. It also brings the ques-
tion of how questions will be ordered, as they may come in a jumbled order due to the
parallelism. This issue must be addressed for actual systems.

Whether or not two orders of magnitude of speed increase can be achieved with
backward chaining is an open question. If we were to speculate, it would be that it can
be achieved with large knowledge bases that require little, if any interaction with the
user. In general parallelism can provide some benefits to the speed of expert systems
and in the future may provide truly indispensable benefits.

It is too early in the game to definitively specify the best architecture for parallel ex-
pert systems. Ilowever, one can make some experience based speculations, which follow.
The processors should each have some significant amount of local memory. There needs
to be some shared memory also. This might be in one location or distributed, it is very
unclear which is best. The processors we have been concerned with would be MIMD,
capable of doing independent work, which is clearly different from a neural model. Be-
cause of the shared working memory, it would seem that some sort of hypercube or
switch connected system would be better than a bus-based system. On the Multimax,
it was hypothesized (but never definitively shown) that an unexpected amount of bus
contention was causing unexpected performance degradation. At this time it would seem
that the system need not be concerned with thousands of processors, but hundreds at

the maximum. The ability to efliciently implement spin locks will be important.

2 Publications and programs

This section contains a summary of our current publications under the grant and the
programs developed. Submitted papers are not included.

Parallel Rule-based Algorithms for Reasoning Systems, AAAI Spring Symposium
Series on Parallel Models of Intelligence, Stanford, Ca. March 1988.

Parallel Rule-Based Algorithms for Reasoning Systems, 1°! Florida Artificial Intelli-
gence Research Symposium, Orlando, F1. May 1988.

Parallelism Applied to Fuzzy Rule-Based Reasoning, North American Fuzzy Informa-
tion Processing Society Conference, San Francisco, June, 1988.

(With O. Kim)

Datapac: A Parallel Reasoning Forward Chained System, Proceedings of the 2" annual
Florida A.I. Research Symposium, Orlando. April 1989.

(With T. Higgins and C. Eggert)

Backpac: A Parallel Goal-Driven Reasoning System, IJCAI-89 Workshop on Parallel
Algorithms for Machine Intelligence, Detroit, Aug. 1989.

Parallel Rule-Based Algorithms for Reasoning Systems, Advances in Artificial Intel-
ligence (Mark Fishman, Ed.), Jai Press, pp. 179-186, 1989, Greenwich, Conneticut.

(With O. Kim)

Results from a Parallel Reasoning Forward Chained System, Advances in Artificial In-
telligence, Vol. 2, Mark Fishman (ed.), Jai Press, To appear.

Parallelism in Backward-chained Ezpert Systems: FEzperimental Results, Applica-
tions of Artificial Intelligence VIII, Orlando, F1. April 1990.

Higgins, Timothy A. (1989), Issues in Parallel Expert Systems, M.S. Theses, De-
partment of Computer Science and Engineering, University of South Florida, Tampa,
December.

Kim, O. (1989), A Distributed Parallel Hierarchical Forward Chaining Inference
System, Master’s Thesis, Department of Computer Science and Engineering, University
of South Florida, Tampa, April.

Programs: ,

Datapac (Multilisp version), Backpac (C, Multilisp, Mul-T, and Common Lisp versions),
Parallel EMYCIN (Common Lisp and Multilisp versions).

3 Details of the results and issues in the USF ISL’s
parallel expert systems research

3.1 Introduction

Intelligent systems make inferences about a situation based on their internal knowledge.
When they contain a lot of knowledge or are working on a big problem, many inferences
and/or much searching of knowledge must be done. This can cause a knowledge-based
system to be slow. Large knowledge bases currently might be classified as being on
the order of about 5000 picces of knowledge. In the near future NASA, for example,
envisions knowledge bases of 20,000, and more, pieces of knowledge for the space station!
At the 1988 AAAI spring symposium, the usefulness of medical knowledge bases with
100,000 or more pieces of knowledge was discussed. It is known that the current limits
of computing on one processor are being approached and even if the limit wasn’t being
approached, the desired size of a knowledge base is probably growing [aster than raw
compute speed. Parallel inference may provide a significant speed increase and allow
larger problems to be attacked effectively. This work has been targeted to determine the
opportunities and limits for the incorporation of parallelism into rule-based intelligent
systems.

NASA is in the process of developing a multiprocessor system to use in the Space
Station for intelligent systems tasks. The spaceborne very large scale integrated circuit
multiprocessor system (SVMS) will likely be made up of Lisp chips. It will be designed
to support Artificial Intelligence tasks. Algorithms for Al and expert systems must be
developed to support this and other parallel architectures. More specifically, expert
systems for real time applications may be developed on such a machine and systems
that would, currently, be too large to run in reasonable time on a uniprocessor may be
investigated.

Initially, we will give a summary of our current progress. Then we will discuss our

plan for the continuation of the research.

3.2 Background

On the gross level of detail, independent inferences may be performed in parallel and
much of an individual inference may also be performed in parallel (i.e. pattern matching).
If the communication overhead of the parallel breakup of the reasoning system is not
overwhelming some excellent increases in system speed may be hypothesized. Fine-
grained parallelism may also enable speed-ups, if the overhead is kept to a minimum(14).

There are various ways to represent knowledge and perform inference [46). Ilere, our
work is concerned with a rule-based knowledge representation scheme, which allows fuzzy
certainties or beliefs in both the rules and the working set of information that the system
contains [17]. The use of fuzzy logic allows the modeling of many intelligent /expert tasks
in domains which contain imprecision or uncertainty. The only real effect this has is to
require continued work, if we are evaluating clauses in parallel. Even if a value for an
or’ed clause is found (unless the value is one) processing must continue until they are all
known, since a greater value may be found. A rule-based system may operate in either
forward chained (data-driven) or backward chained (goal-driven) mode. Ilere, we discuss
them in the both modes. We discuss the current results of a backward chained expert
system, Backpac. Also, experience with Datapac and parallel EMYCIN is expounded
upon. Each of the paradigms discussed here has been tried on at least one parallel
processor machine.

There is much work going on in parallel Prolog [47]. Certainly, it can provide for
effective parallel rule-based systems. Our approach is concerned with paradigms other
than those available under Prolog. The Lisp paradigm is reported on here, but we
are also looking at systems in C because of the efliciency and low-level features that it
offers. In fact, the paradigm which makes use of the future construct as its primary

parallel operator is the actual one used. It will be explained in the later discussion on

the languages used.

Our systems have been implemented in Multilisp [26], which is a parallel version of
the Lisp programming language. Multilisp has the flavor of the Scheme dialect of Lisp.
Multilisp takes Lisp expressions and compiles them into an intermediate representation
called Mcodes. At run time it interprets these Mcodes. It also has a run-time library
of support routines which are written in Multilisp. Ilence, the system is rather slow,
especially when compared to a good compiled Lisp. It is very portable code, though.
Code compiled on a SUN will (and has) run without change on a multiprocessor (the
Concert), since the Mcodes across the two systems are the same. The implementation
of the Mcode instructions is, of course, different between the two machines. In fact the
Mcode versions of a program will run on any machine which has the same version of the
Multilisp system.

Multilisp [27] has one primary parallel operator, which we will briefly describe. A

function may be future’d which means to declare it to run in parallel. An example use
of the construct is
(setq ex (future (+ 2 3))).
The future construct immediately returns a future value for ex and spawns a task to
evaluate (+ 2 3). Now ex may be put in lists or manipulated in any manner which does
not require an actual value. When an actual value is needed the task requiring it is
suspended until the value is determined, unless the future has previously resolved to the
necessary value, in which case operation continues normally. This powerful construct
is the basis used to provide parallelism in the system discussed here. Semaphores are
available to protect shared variables.

MUL-T [32] is a compiled Lisp which runs on the Encore Multimax. It has an
environment which makes it look very much like Multilisp. In this environment, most
Multilisp constructs are available. Most importantly for this work, the future construct

for parallelism is available, as are semaphores. Since code in MUL-T can be compiled,

10

it provides significantly faster execution times than does Multilisp.

Backpac and Datapac have been tested on the Concert multiprocessor system and
the Encore Multimax [29, 23]. The Concert is a multiple instruction, multiple data
machine (MIMD), which may be configured for up to 64 processors in the version of it
we have used. The most processors actually used in this study are 31. The Concert
consists of eight clusters each cluster having eight MC68000 processors, which have a
half a megabyte of memory on board. The clusters are connected by a crossbar switch.
There are eight megabytes of 16 way interleaved memory shared memory. All memory
may be accessed by all the processors. However, we do not explicitly have non-local
processors access another’s local memory.

The Multimax had 10 processors in the configuration at USF. Five processor boards
are in it, each with 2 processors. The machine may have up to 20 processors (10 boards).
It is a shared memory machine with 32 megabytes of shared memory in this configuration.
In addition each processor has a 64K cache local to it, which only it may access. The
processors share a common bus which has 100 megabit peak throughput. Both Multilisp
and MUL-T are available on the Multimax.

The basis for all speed-up comparisons on the Concert and Multimax is the following.
The best sequential version of the developed system is run on one processor and its
performance is compared vyith the best parallel version running on some specified number
of processors. We do not time the initial loading and set up of the knowledge base in

either the sequential or parallel version. Only the process of inferencing is timed.

3.3 Backpac

Backpac is a rule-based expert system which can diagnose diseases which cause fevers
to be evident, or identify rocks or diagnose problems with four-stroke piston-driven car
engines. These problems are attacked with separate knowledge bases. They make up our

suite of real-world knowledge bases. While the domains are quite different, they can he

11

loosely described as diagnostic in nature. The sy'stem chains backward {rom goals in its
reasoning process. Backpac allows the user to enter fuzzy certainties to its queries. The
system paradigm is that of a classification or diagnostic expert system. It is implemented
in Multilisp and has been re-implemented in MUL-T. Backpac is implemented in such a
manner that it can run in Common Lisp [59] with parallelism functions removed. It in
fact has run on a Symbolics Lisp machine in common Lisp. This is important with the
advent of parallel common Lisps from Lucid, Franz, and Top Level among others.

This effort at parallelizing rule-based expert systems differs from others [45, 38} in
the following manner. Rather than parallelizing a match algorithm such as Rete [8]
in an existing (in this case forward-chained system) or parallelizing an existing system,
Backpac has been built from the start with parallel inferencing as a goal of its operation.
One important issue this work has been aimed at, is to discover how much speed-up might
be available in a rule-based backward-chained parallel reasoning system and what the
limiting constraints are.

The system itself is simpler and more limited than one which uses Rete (or some
other match algorithm in a match, recognize and act cycle type of production system).
There are two versions of Backpac, one which makes some use of variables and the
current model that we report on which does not. In this system a rule’s premise is
examined only once and pattern matched at that time. It is intended that under the
variable version of the system several instantiations of the rule may be fired, but only
at the time it is examined. Hence, minimal state information is saved. Backpac is not
as general a tool as an OPS5-based system, but it is still capable of being used to solve
interesting problems at the cost of more burden on the knowledge engineer.

Rules in the system are defined by Lisp functions. They may contain any level of the
nested conjunctives and and or. Negation is also available. Special purpose functions
can be added and some comparators exist. The rules come in two types, goal and others.

Each clause in the rule is defined in a function in which it is associated with a string to

12

be used to ask the system user questions. A clause can be a function such as (greaterp
age 15), where the value of age being larger than 15 is determined to be true or false.
This is the only place that any variable facility is currently allowed in the version of
Backpac (V.3).

Originally, Backpac was imp]emer}fed in a simulator which ran on a VAX [19]. Un-
fortunately, it did not take into account memory contention or bus contention. Small
granularity tasks tended to provide speed increases in the system. Also, until we made
some optimizations the granularity of some tasks was larger than it should have been.
The fallout of this is that we originally did much more in parallel than is done currently.

There is only one level of parallelism in Backpac. Every goal rule, a rule which has
no successor and therefore provides a conclusion for the system, can be run in parallel.
Alternatively, they may be broken into groups of goal rules and these may be run as
one process. This high-level is the only one in which parallelism is used. If we attempt
to determine the values of clauses in parallel for example, the system will slow down
because the task granularity is not large enough in general.

Our algorithm for breaking goal rules up into groups is naive at this time. We simply
partition them into the first available group of the desired size as they are encountered.
This can lead to uneven task size.

There is a question ordering issue when the user is queried interactively. The sys-
tem user will be processing questions sequentially, but they can arrive in an unordered
manner. The questioning process must be able to order them so that the user perceives
lines of questioning. In the parallel tests reported here values for the clauses are pre-set
in working memory.

Backpac uses fuzzy modus ponens, as defined in [1], to reason with uncertain in-
formation. Conjunction is represented by maz and disjunction is represented by min.
Multiple pieces of evidence are combined as in the Fess expert system [17]. The evidence

accrues into a stronger belief. In this area the only effect of fuzziness on parallelizing the

13

system is that a non-zero predicate in an or does not necessarily mean do not evaluate
the other ones. [Mowever, this only occurs if we examine clauses in parallel, which we

are not currently doing.

3.4 Parallel reasoning

The following is a descriptionl of how Backpac’s flow of control proceeds. Initially, all the
bottom level goals are partitioned into groups. The user may set the size of the groups.
The group size may be as small as one, which means each individual goal rule is fired
by a separate process. These processes will also be responsible for doing any chaining
which may be necessary.

At the largest level all the goal rules may be in one group. This will provide sequential
execution of the rules with some added overhead, as one task to do them (separate from
the control thread) is spawned. Alternatively, any number of intermediate group sizes
may be created, each of which will correspond to a process.

Working memory is a shared data structure among processes. Values of clauses are
represented on property lists. There is no difliculty with multiple readers and there is
only one case in which multiple writers might collide. It is described in the following.

It may be the case that several rules from different process groups will require the
same rule to be fired in order to determine a clause value. A semaphore is associated
with clauses. When a rule is fired to determine a clause value the semaphore is set.
This prevents other rules from firing. Those suspended can get the value from working
memory after the rule has been fired and the semaphore released.

After all goal rules have provided a belief value for their consequents, the system will
present all goals which have a belief value associated with them which is greater than a

pre-set threshold. These values are returned by the goal rule and kept in a list.

14

3.5 Experimental results

We will now present the results from our tests of the Backpac system with high-level
parallelism implemented. The results from Concert and the Multimax will be discussed
separately. Tirst the results from Concert will be discussed. The results are summarized
in Table 1.

The best results from the four knowledge bases run on the Concert are reported
here. In Backpac, a 17-fold increase in speed was observed with the use of 20 processors.
This occurred on a knowledge base of 800 rules with them all on the goal level. This
knowledge base could be viewed as a set of control rules, where periodic actions are
taken based on some time clock. Using the knowledge base on fevers with the use of 12
processors by assigning goal rule clusters to each processor, the speed-up was just over
10 times. In a 400 rule knowledge base with 50 goal rules and 8 levels a speed increase
of just over 9 was observed with the use of 10 processors.

From the table, it is clear without clustering goal rules onto processors, there is very
little speed improvement. There are a set of lights on the Concert which indicate switch
contention. In the case of no rule clustering they show a lot of contention. It is clear
that as we use use more clusters of rules, performance will increase to a point and then
adding clusters will provide a degradation of performance. This is due to the fact that
adding another cluster of rules also adds a process to the system. The process then will
make memory and switch requests, which cause contention. The contention becomes a
more important issue than the task granularity. Also, as more clusters of goal rules are
assigned to a processor the size of the cluster will go down, since the number of goal
rules remains constant. Hence, task granularity is reduced in addition to the increase in
contention.

On the Encore Multimax our speed-ups are less impressive. However, we do have less

processors which is one factor. None of our efficiencies on the Concert is above 90%’.

1Efficiency is defined as the amount of speed increase over the number of processors used.

15

Knowledge Base | Speed up | Number of goal processes
fevers 10.4 12

fevers 8.8 10

fevers 6.4 7

fevers 9.7 20

fevers 3.5 24

fevers 1.9 31

fevers 1.4 60 7
gems 5.16 10

gems 4.2 7

gems 2.9 11

400 rules, 8 levels | 9.1 10

400 rules, 8 levels | 8.1 12

400 rules, 8 levels | 6.0 15

400 rules, 8 levels | 2.3 30

400 rules, 8 levels | 1.9 2

800 rules, 1 level | 17.0 20

800 rules, 1 level | 16.2 30

Table 1: Results from the Concert multiprocessor with 31 available processors.

16

Hence, 8+ times speed increase is about the maximum that we would expect from the
Multimax.

The best results will be highlighted here and then we will discuss the overall flavor of
these results. With the fevers knowledge base, a speed-up of 5.5 times with 8 processors
was observed. This was the best result with a real-world knowledge base.

Some better results were observed with the use of generated knowledge bases. All of
the generated knowledge bases have regularity in their structure. An 800 rule knowledge
base made up of 8 levels of chaining and 100 rules per level was observed to have a little
bit over a 7 times speed-up. This is with the use of 10 processors. Another knowledge
base that had a good speed-up was the 400 rule knowledge base, which consisted of 8
levels with 50 tules per level. Tt provided a speed-up of slightly less than 6 1/2 times,
when tun on 10 processors. The rest of the results are summarized in Table 2.

It can be seen that chunking rules into groups on the goal level was done. The idea of
increasing granularity and decreasing contention for memory and the shared bus seems
reasonable. However, it did not provide the benefits hoped for. Apparently, having more
available small tasks works better in some cases. This is despite the clearly increased

overhead of having more tasks with a lower granularity size competing for resources.

3.6 Backpac in Mul-T

The Mul-T version of Backpac makes use of arrays for the types of knowledge repre-
sentation that originally used property lists. This and the compiled nature of it makes
the system very fast. Larger knowledge bases can and have been used under Mul-T.
The performance of the fevers knowledge base is less since the granularity of the tasks
has gotten quite small. To add processors causes a distinct degradation of performance.
The multi-level knowledge bases prove to have little contention and get quite good per-
formance. Table 3 contains the results of tests in MUL-T. All tests have just goal level

parallelism implemented.

17

Knowledge Base | Max. speed up | Number of processors | Rule clusters
fevers 3.8 7 N/A
fevers 5.13 8 8
gems 3.095 9 N/A
gems 3.7 7 7
200 rules, 8 levels | 5.24 9 N/A
200 rules, 8 levels | 3.29 8 8
800 rules, 8 levels | 5.14 10 10
800 rules, 8 levels | 7.27 10 N/A
200 rules, 4 levels | 5.53 9 N/A
200 rules, 4 levels | 5.11 10 10
200 rules, 4 levels | 3.59 8 7
400 rules, 8 levels | 6.47 10 | N/A
400 rules, 8 levels | 5.09 10 10

Table 2: Results from the Encore Multimax.

Knowledge Base Maz. speed up | Number of processors | Rule clusters
fevers 3.43 6 N/A
1200 rules 5.24 9 7 N/A
1280 rules (2 levels) | 6.31 10 N/A
400 rules (8 levels) | 7.25 9 N/A
2560 rules (2 levels) | 7.25 9 N/A

Table 3: Results from the Encore Multimax under MulT.

18

It is our intent to add more complex variable handling and pattern matching features
to Backpac. This will ;lp the task granularity and provide a more powerful system for
experiments. One thing has become clear. The language, machine and operating system
currently have a strong effect on results and all results must be looked at in the overall

context.

3.7 Backpacin C

The Backpac system has also been written in C [4]. The C language is available on most
parallel machines. Hence, this effort provides us a straightforward method to examine
the performance of the system on different architectural platforms. The C language
implementations are also, generally, faster in terms of compile and run time speed.
Briefly, we discuss some results from the Encore version. In this version the speed-ups
were less than in the Lisp version for comparable knowledge bases. As the knowledge
bases got larger, approximately the same speed-ups were observed as shown above. I'or
an example, a generated knowledge base of 12,800 rules all on one level gave a speed-up
of about 7 times with 9 processors. With the Fevers knowledge base using busy waits
for access to working memory, we got about 6 times speed increase. These results do
not include the initial overhead of copying shared information. One issue that shows up
in this arena is that of memory copying and process overhead. The overhead of initially
copying the shared information, such as working memory and sets of rules, is quite high.
It is easier to measure than in the Lisp systems, where the initial start-up of processes
and pointer structures is folded into the Lisp system initialization. However, over many

runs of an expert system this overhead will become a negligible portion of each one.

3.8 Datapac

The Datapac system is a parallel hierarchical forward chaining inference system designed

to maximize the inferencing speed in a multiprocessor environment by employing the

19

parallelisms in a full range, which includes parallelism between different rule inferences
as well as parallelism within a rule inference. The hierarchical forward chaining inference
system is the rule based system where the rules are arranged in hierarchy according to
the precedence relationship so that each rule is examined only once for firing. Rule level
parallelism allows every rule to try to start its inferencing process as soon as it satisfies
the precedence conditions. Thus, control of the inference flows from the top of the rule
system to the bottom. This processing system, which could be modeled (and has been
run) on a multiple instruction multiple data (MIMD) machines, has been simulated by
Multilisp in this research. Performance evaluations demonstrate that this hierarchical
forward chaining system (Datapac) provides a significant speed increase in a simulated
environment and real gains in multiprocessor environment.

The basic idea is simple and very much aimed at expert problem solving. In order
to come to some conclusion, a path of reasoning will be followed. That is, some chain
of inferences will occur. Datapac breaks the various rules in a knowledge base, which
may participate in a reasoning chain, into levels of rules. On each level the rules are
independent of one another. On higher levels the rules depend upon the inference made
by lower level rules. The bottom level leads nowhere and the top-level has no conclusions
of other rules in its rules’ antecedent.

This scheme is clearly limited. It turns a knowledge base into a sort of decision tree.
However, it does have applicability for at least some types of expert knowledge bases.

Initially, an unlimited number of processors is assumed to be available for our system.
All the rules in the system are given one processor respectively and start inferencing at
once. What controls the reasonable transition of inferencing is the preceder-successor
relationships between processors. A rule processor won’t try matching its premise to the
working memory for rule firing until its every preceding rule’s firing is completed.

The working memory(WMP) contains all the facts which are either initially given or

derived from previous inferencing. Each currently active rule has its antecedent matched

20

against working memory, if it is to be ever fired.

After a rule is fired it sends the result to its succeeding rule processors immediately,
enabling them to start inferencing.

Through the testings, this hierarchical forward chaining system (Datapac) shows a
considerable improvement in speedup. For example, in a rule base where 15 non-variable
rules on average reside in each level, the speedup ratio of parallel run to sequential run
was over 9. Tor a variable rule system of 100 rules, where 20 variable or constant rules

on average reside in each level, the speed-up ratio was over 10.

3.9 Results from simulation

This processing system run has been simulated by CSIM Multilisp [38] for performance
testing. In our simulations, it is assumed that an unlimited number of processors are
available. The results are reported in terms of speed-up and the maximum number of
tasks, which ran in the parallel trials. The speed-up is measured by the best sequential
version versus the best parallel version. The times are divided thereby providing the
reported number.

Some artificial and real domains have been applied to the system. The results show
that this hierarchical forward chaining system (Datapac) can provide a considerable
improvement in terms of speedup. TFor example, for a 90 rule set without variables
(constant) where 16 rules on average are in each level, the speedup ratio of parallel run
to sequential ruh was over 9 with a maximum of 22 processors used. For a 100 variable
rule system inferencing where 20 variable or constant rules on average reside in each
level, the speed-up ratio of parallel run to sequential run was over 10 with a maximum
of 180 processors used. A rule base consisting of 25 variable rules gave a speed-up of
about 5 times with a maximum of 30 processors.

A knowledge base which consists of 64 rules and can diagnose fevers was a real

example which has been used in our system. It showed a simulated speed-up of about

21

11 times with a maximum of 43 processors.

3.10 Results From The Encore Multimax

The system has also been run on a 10 processor Iincore Multimax in a version of Mul-
tilisp which runs on the Multimax. With a knowledge base about fevers which consists
of 64 rules, the system speeded up by a factor of about 6.3 times with 9 processors. This
particular knowledge base has been implemented without variables. This is consistent
with our quest to determine the limits of parallelism in reasoning systems. However, a
generally useful system will necd the use of variables. Note, one processor is left to do
system’s sorts of tasks, such as run the login shell and handle ethernet traflic.

On eight processors a knowledge base of one hundred rules provides us with a speed-
up of almost linear proportions (a factor of 7.3). This rule base contains variables and
the variable pattern matching, which has been parallelized, makes the task granularity
larger than it would otherwise be. With a twenty-five variable rule knowledge basc with
nine processors a speed-up of about five and a half times was observed. These knowledge
bases have to do with relationships in a family. They are really based on tests of logical
structure and have no real depth of knowledge in them. The 100 rule knowledge base
contains 25 rules per level. The 25 rule knowledge base has five rules per level. Basically,
a Model can not be a substitute for a reality. Though the results from the real machine
are the easiest justification of (usefulness of) a proposed scheme, the results from the

model simulation could be a better suggestion for an idealistic machine structure itsell.

3.11 Summary of Datapac issues

Fundamentally, a forward chaining system is a kind of exhaustive search system and it
is commonly known that parallel architectures are very effective for that kind of search

system. Significant speed-up improvement in our system demonstrates that the system is

22

a good parallel scheme for forward chaining rule based inference systems. In this parallel
inferencing scheme, the central control part becomes relatively small by distributing
most of its decision to each individual rule processor. That is another indication that
the system is really close to the one of the idealistic parallel processing concepts in that
controls are distributed over individual processors. We see that as a knowledge base
grows larger, further parallelism and speed-up are possible, almost linearly proportional
to the number of independent sets of rules which means that there’s no clear bottleneck
with any big knowledge base (at least in the range of CSIM simulations and the inputs
we used). The superiority of parallelism to the sequential execution tells about the
suitability of the algorithm in parallel processing. But the superority of our hierarchical
inferencing algorithm to the random inferencing can not be overlooked. Building a
robust construct for more speedy and eflicient parallel logical and/or subprocesses will
be one of the main breakthroughs for an upgraded parallel inferencing scheme which,
with current Multilisp features, is not easily achieved [31]. We observe that the size and
the structure of the knowledge base affects the performance of the system.

There is also the question of how often such a model as this may be useful. This is

one of the areas for ongoing investigation.

4 Experiments with parallel Emycin

EMY is the name given to a parallel version of EMYCIN by two researchers at the
Microelectronics Computer Technology Consortium [38]. It runs under Multilisp, which
is a parallel version of Lisp.

There are results from simulations, which are reported in [38] and [16]. In the first
case contention for memory and possibly a bus are not taken into account. In the second
simulation of EMY under Common Lisp, an attempt is made to incorporate reasonable
hardware contention in the results. In this work, we compare the simulation results to

the actual results from running the EMY system on an Encore Multimax, which is a

23

bus-based architecture and the 64 processor switch-based architecture Concert machine.
Further, we have made changes to the system to (hopefully) improve its performance.
These results will also be presented with an analysis of the possibilities for providing
any future speed-ups.

The parallelism used by Krall and McGehearty was on three levels. Each rule was
applied in parallel. The hypotheses were traced in parallel. Each predicate of a premise
was determined in parallel with the use of parallel and and or operators. An examination
of the operation of EMYCIN shows that these are logical places for the insertion of
parallel operators.

In actual operation on the machines we used, which are early versions of parallel
architectures and thus have reasonably high overheads, there is some question on whether
the granularity of determining predicates is large enough to justify the parallelism used.
In fact in the Backpac system [20], we have found, that it is not in general. This same
fact was true of EMY as is shown in the following.

Also, in other parallel systems with which we have worked, Backpac and Datapac,
[19, 23] contention for memory and the bus have been observed to be problems in some
cases. The hypothesis that EMY might also suffer from these problems was tested in
EMY with inconclusive results.

On the Concert, all results reported here are with 23 processors available. Most of
the time we were working with four megabytes of memory, although a couple of runs were
done with 8 megs. There can be a difference of times based on less garbage collections.
However, we were careful about filling up our garbage space and restarted the system
when it began to be a problem (after multiple runs).

On the Multimax, results will be provided with the number of processors that they
were obtained on. In general, it has been found that under Multilisp on the Multimax,
performance is better with less than 10 processors. This apparently has to do with

system tasks mixing in with user tasks and some scheduling overhead.

24

In initial results with EMY, and a knowledge base on fevers, it was predicted that
about a 12 times speed-up would be the upper limit with 24 processors (comparable to
our 23) [38]. With 8 processors the upper limit was 5.6 times [38]. In the later study
EMY with the same knowledge base was shown to peak at a 9 times speed-up with 64
processors. In fact it came very close to this peak by 16 processors, although exact figures
were not given [16]. The model was of a shared memory machine with a hierarchical
interconnect and clustered processors (8 processors per cluster). It is somewhat like the
Concert architecture, but rather different than the Multimax architecture.

Below, we just discuss on a high level the results from running parallel EMYCIN on
the Concert” We have made some adjustments to the original EMY, but retained the

semantics. A complete description of this work is in [25].

4.1 Results from parallel EMYCIN on the Concert

The results were lower than one would expect from 23 processors. With the fevers
knowledge base a speed-up of five times was observed. In this case no and/or parallelism
was used. Both the rules and hypothesis lists were broken into chunks. There were 20
rule chunks and 9 hypothesis chunks in the best case, given above. Not all possible
combinations were tried, but enough to narrow down the best to within one or two
chunks and the time to no more than about two tenths of a second difference. Note,
that the speed-up reported belongs to the fastest parallel and sequential times over
several runs.

Without using any chunking, the fevers KB provided a five times speed-up, also.
Chunking was of essentially no help. If it was not done to maximize the speed with the
best chunks, worse performance occurred! This was a surprise, so an investigation was
made as to why it happened. It turns out that while the time to determine a hypothesis
may vary by a factor of 2 it is small compared to the average rule evaluation time. This

is not surprising since a hypothesis is evaluated by evaluating the appropriate premise

25

of a rule which has already been fired. That is all the clauses or predicates have a stored
value. Rule firing times on the other hand can vary widely. By an order of magnitude
in fact. If the rules are not chunked or clustered very cleverly, it is likely that several
long rules will end up in the same chunk. This process will then take a long time to
finish, because it has much work to do. Now the work which may be done in parallel is
reduced, so while contention may be less, it is offset by the lack of parallel work (or the
increase in the sequentiality of the system).

The parallel and/or code was also tried on the Concert. Ilowever, with the chunked
system it significantly increased the time to determine a conclusion (by up to a factor of
2). It spawns a lot of small tasks, whose overhead costs outweigh the benefits of more
parallel work.

Knowing that semaphores are expensive, we tried one scheme to minimize the nec-
essary locking on a semaphore. If a value has already been determined, it will be in the
appropriate clause. Currently, whoever wants to look at it must check a semaphore. The
code was changed so that a flag could be examined instead (after the value is initially
determined). Unfortunately, the constant evaluation of the extra code cost more than
was saved by the skip of the semaphore. It turned out that the time was only about
four to eight percent greater. Hence, it was almost a wash.

The gems knowledge base was also examined under the EMY paradigm on the
Concert. Its characteristics are distinctly different than the fevers KB. It has more rules
and more levels of chaining (up to 4). With gems, just as in [38], the speed-up was less
than with the fevers knowledge base. It was about 2.8 times. This was with chunking
of 8 rule chunks and 8 hypothesis chunks. With no chunking, the speed-up was slightly
slower. The use of the parallel and/or mechanism slowed the system down slightly, also.
The method of skipping a semaphore did nothing for gems, either.

The results discussed are less than the simulation would lead one to expect. However,

it is possible that they may be improved.

26

5 Directions from parallel tests

We, initially, used a simulator [19] to develop the systems which are reported upon. This
simulator did not effectively take into account memory contention and bus contention
delays. Tl}is lead us to great results, which we realized were inflated, and some higher
expectations. After actual experimentation, we would not place too much faith in a
simulation, except for a rather general idea of possible performance. The exception
would be a simulator strongly tied to a specific machine architecture and using the
measured or expected delay times, and contention (bus and memory) times, etc.

Another thing we learned is that creating a parallel task wherever there is a reason-
able opportunity to perform some computation in parallel is not necessarily the correct
action. Consideration of the amount of processors available must be done in addition
to the usual granularity considerations. Many more tasks than processors caused a
scheduling slowdown that was noticeable under our paradigm for some knowledge bases.
Further, even if there are processors available, more tasks will create more bus and
memory access requests. If they do create significant bus and memory; access requests,
contention will slow the system down. This is, of course, architecture dependent. The
results of bus (switch) contention were quite evident on the Concert. On the Multimax,
we suspected bus contention, but could not show it. We came to conclude that it was re-
ally memory contention, caused by the fact that we could not generate copies of objects
in a reasonable fashion. Certainly, separate cons cells (pointers) were no problem, but
in the end they would point to the same location where contention could occur. This
was again a function of our Lisp’s paradigm.

Good tools to determine what is happening in a parallel computing system are a
necessity. These tools did not exist for us to measure performance under Lisp on either

the Concert? or the Multimax.

2 Actually, there were some parameter recording utilities in Multilisp. There was not documentation
however and the decoding programs were targeted for a Symbolics machine to which we had no access.

27

6 Summary of current status

In our simplified model of a backward chained expert system, there have been some
reasonable speed increases with the use of parallel processing. The limiting factors are
not fully clear at this time. Certainly contention for working memory is one problem.
Task granularity is another issue, but it is not unique to expert systems.

The Concert implementation of Backpac responds much better to clustering of goal
rules into tasks than the Multimax implementation. On the Multimax clustering goal
rules was helpful with the complicated predicates in the fevers and gems knowledge
bases, but not elsewhere. Both machines use shared memory, but the architecture of the
processors makes their characteristics markedly different. The current bottlenecks are
contention based and better tools may help mitigate this.

The particular dialects of Lisp that we have been using have quirks of their own
which have prevented some trials from being made. The lack of a way to get true
copies of values and arrays has kept us from trying some methods to minimize memory
contention. It has also prevented the eflective partioning of working rﬁemory to reduce
contention. This would show whether it is different from bus contention in preventing
exploitation of parallelism. On the Multimax the lack of a way to keep other processes
(such as the ethernet controller) from mixing in with ours has had an effect in obscuring
some possible exploitation of parallelism.

Datapac shows promise in increasing inferencing speed with the use of parallel pro-
cessors. The main issue here is how many problems can it effectively be used to solve. It
is certainly much less functional than OPS5 with Rete or some other pattern matching
algorithm. However, it has less bottlenecks for parallel processing and may be used to
solve a reasonable set of expert emulation (system) problems.

Our initial test with the EMYCIN system show that the speed increase from paral-

lelism is less than simulations tend to show. It also shows that little is gained from using

and /or parallelism in general. It seems that one might be able to use it in pre-identified
places, however. Naive, clustering of rules is not helpful for the rules in the example
knowledge bases that we have been using. This is due to the fact that the time to fire
a rule can differ by an order of magnitude.

There is a benefit to parallelizing expert systems on current architectures. For back-
ward chained systems, there are limits to the speed increase that will be available. These
limits need to be better quantified. As the architectures become better able to handle
finer grained tasks and the languages evolve, parallelism should be more of a factor in

improving the performance of expert/intelligent systems.

6.1 Technological issues

There are several technologic issues which affect this work. Using C in the Backpac effort
comes under this category. For it allows us access to low-level parallel features such as
spin locks, which haven’t been available under Multilisp. Spin locks in particular are a
very useful concept for protecting working memory. A process that is writing to it will
not take a large amount of time. However, the use of semaphores is time-consuming,
because a process gets suspended (involving state saving) and put on a task queue
waiting for an event. In this case a busy wait (which will normally be quite short) is
more effective, embodying less overhead.

In addition there can be different classes of parallel tasks from full processes with all
the information they embody to lightweight tasks sometimes called threads [42], which
don’t have a control or binding stack of their own. These entities can allow for finer
grained parallelism than a full-fledged fulure process. The use of such entities will better
allow for at least some predicate/clause processing to be done in parallel. These features
are often available in C and are available in some of the new parallel common Lisp’s

such as Top Level’s, PICCL?. We will use the Common Lisp features, when a machine

3PICCL is a trademark of the Top Level Co.

29

with the language on it comes available.

Knowledge-based systems may become large for a number of reasons. Among them
are that the domain embodies a lot of information (often called commonsense notions),
the domain is relatively broad or multiple areas of expertise are needed to solve the
problem. These are not comprehensive or mutually exclusive, but they serve to introduce
the final topic to be examined near the end of this proposal’s work. Blackboards [5] have
proven to be effective in allowing for multiple cooperating experts. In the blackboard
concept several independent knowledge sources, which are expert systems in their own
right cooper'a,te to solve a problem. Intermediate solutions, solutions to portions of a
problem and modifications of proposed solutions are posted to a global data structure
called a blackboard. This has lead such systems to be called blackboard systems.

There are issues such as control and how the blackboard is used that make for signif-
icant differences between blackboard systems [44]. Clearly, the independent knowledge
sources may operate asynchronously, or in parallel, under some control schemes. Indeed,
one of the early expert system called HEARSAY [39], a speech understanding system,
used the knowledge source, blackboard paradigm. It has further been investigated [44] in
parallel simulations to look at the possible benefits in speed from parallelization. Not all
the results at this time are very promising, but we believe it to be a domain dependent
situation.

In the context of our work, the use of blackboards would fall under the broader
heading of partitioning knowledge bases. It could provide a very clean partitioning with
each knowledge source having its own working memory, thus reducing contention for
that. Additionally, given a good partition of the problem the granularity of the knowledge
sources could be kept high. This would be an artificial use of blackboard architectures
getting away from the original idea of purely cooperating experts. However, it holds out
the possibility of some clear advantages. Additionally, parallelism could be used within

the knowledge base in the vein of Backpac and Datapac, providing that the knowledge

30

sources had a large enough number of rules to warrant such activity. The investigation
of the utility of blackboards for parallel expert systems would provide both a contrast

and possible enhancement to the effort of parallelizing individual knowledge bases.

6.2 Summary

This work has involved the development and measurement of both goal-driven and data-
driven expert system paradigms for parallel machines. Currently, we have a 64 processor
Concert machine, 32 processor Butterfly machine, a 12 processor Ardent Titan (which is
a collection of four networked machines in our College of Engineering) and an 8 processor
Encore Multimax as available research platforms. A 16 processor llypercube will become
available in February or soon thereafter of 1990. Each of these machines runs Common
Lisp, C, Multilisp or some combination of them. Promise has been shown in the use of
parallelism in expert systems work. Many questions have been raised and a few of them

answered.

References

[1] Bandler, W. and Kohout, L.J. (1984), The I'our Modes of Inference in Fuzzy Expert
Systems, Cybernetics and Systems Research 2, R. Trappl (ed.), North-Holland.

[2] Boborow, D.G., et.al. (1988), Common Lisp Object Specification, Chpts. 1,2, Xerox
PARC, Palo Alto, Ca.

[3] Clark, K. and Gregory, S. (1986), PARLOG: Parallel Programming in Logic, ACM

Transactions on Programming Languages and Systems, V. 8, No. 1, pp. 1-49.

[4] Eggert, C.V. (1989), Backpac Results under C, Technical Report ISL-3-89, Dept.

of Computer Science, Univ. of South I'lorida, Tampa.

[5] Englemore, R. and Morgan, T. (eds.) (1988), Blackboard Systems, Addison-Wesley,
Reading, Ma.

31

[6] Fergurson, C. and Korf, R.E. (1988), Distributed Trec Search and its Application

to Alpha-Beta Pruning, AAAI-88, pg. 128-132.

[7] Finkel, R. and Fishburn, J. (1982), Parallelism in Alpha-Beta Search, Artificial

8]

Intelligence, Vol. 19, No. 1, Sept.

Forgy, C.L. (1982), Rete: A fast algorithm for the many pattern/many object

pattern match problem, Artificial Intelligence, 19, 17-37.

[9] Forgy, C.L. (1981), OPS5 User’s Manual. Tech Report CMU-CS-81-135, Depart-

[10]

[11]

[12]

[13]

[14]

[15]

ment of Computer Science, Carnegie-Mellon University.

Greenberg, M. and Cuny, J.E. (1988), Parallelism in Knowledge-Based Systems
with Inheritance, International Conference on Parallel Processing, August 1988,

pp. 141-145.

Gupta, A. (1987), Parallelism in Production Systems, Morgan Kaufmann Publishers
Inc., Los Altos, Ca.

Gupta, A., Tambe, M., et. al. (1988), Parallel Implementation of OPS5 on the Iin-
core Multiprocessor: Results and Analysis, International Journal of Parallel Pro-

gramming, V. 17, No. 2, April.

Gupta, A., Forgy, C.L., Kirp, D., et. al., Parallel OPS5 on the Encore Multimax,

International Conference on Parallel Processing, August 1988., pp. 271-280.

Gupta, A. and Tambe, M. (1988), Suitability of Message Passing Computers for
Implementing Production Systems, AAAI-88, pg.687-692.

Gupta, A., Forgy, C. and Newell, A. (1989), High-Speed Implementations of Rule-
Based Systems, ACM Transactions on Computer Systems, Vol. 7, No. 2, pp. 119-
146.

32

[16]

[17]

(18]

[19]

[20]

21]

[24]

Guzman, A., Krall, E.J., McGehearty P.I'. and Bagherzadeh, N. (1987), Perfor-
mance of Symbolic Applications on a Parallel Architecture, International Journal

of Parallel Programming, Vol. 16, No.3, pp. 183-214.

Hall, L.O. and Kandel, A. (1986), Designing Fuzzy Expert Systems, Verlag TUV

Rheinland, Germany.

Hall, L.O. (1987), Architectures for Reasoning in Parallel, NASA-Ames Research
Center, RCR branch report 2018, Moflett Field, CA.

Hall, L.O. (1988), Parallelism in Fuzzy Rule-Based Reasoning, University of South
Florida, Dept. of C.S., Report CSE-88-00003, Tampa, 1.

Mall, L.O. (1988), Parallel Rule-based Algorithms for Reasoning Systems, AAAI
Spring Symposium Series on Parallel Models of Intelligence, Stanford, Ca. March

1988.

Hall, L.O. (1988), Parallel Rule-Based Algorithms for Reasoning Systems, 1*
Florida Artificial Intelligence Research Symposium, Orlando, F1. May 1988. Also a

version will appear in Recent Advances in Artificial Intelligence, JAI press, 1989.

Hall, L.O. (1988), Parallelism Applied to I'uzzy Rule-Based Reasoning, North Amer-

ican IFuzzy Information Processing Society Conference, San Francisco, June, 1988.

Kim, O. and Hall, L.O. (1989), Datapac: A Parallel Reasoning Forward Chained
System, Proceedings of the 2"¢ annual Florida A.I. Research Symposium, Orlando.

April 1989.

[Tall, L.O., Higgins, T. and Eggert, C. (1989), Backpac: A Parallel Goal-Driven
Reasoning System, IJCAI-89 Workshop on Parallel Algorithms for Machine Intelli-
gence, Detroit, Aug. 1989.

33

[25] Mall, 1.0. (1989), Parallel EMYCIN on an Encore Multimax and the Concert,
Technical report ISL-1-89, Dept. of Computer Science, University of South IFlorida,

Tampa.

[26] Halstead, R.H. (1985), Multilisp: A Language for Concurrent Symbolic Computa-
tion, ACM Transactions on Programming Languages and Systems, Vol. 7, No. 4,

October.

[27] Halstead, R.H. (1986), Parallel Symbolic Computing, IEEFE Computer, August, pp.
35-43.

[28] Halstead, R.H. (1986), Concurrent Lisp Machines, M.LT. Lab for Computer Sci-

ence, To appear.

[29] Halstead, R.H. and Thaker, G. (1988), The Concert 1.0 Execution Environment,

M.LT. Laboratory of Computer Science, Cambridge Ma.

[30] Higgins, T.A. (1989), Issues in Parallel Expert Systems, Master’s Thesis, Depart-

ment of Computer Science and Engineering, University of South Florida, Tampa.

[31] Kim, O. (1989), A Distributed Parallel Hierarchical Forward Chaining Inference
System, Master’s Thesis, Department of Computer Science and Engineering, Uni-

versity of South Florida, Tampa.

[32] Kranz, D. (1988), MUL-T manual, Department of Computer Science, Tech. Report,

Yale University.

[33] Kumar, V., Ramesh, K., and Rao, V.N. (1988), Parallel Best-First Search of State-
Space Graphs: A Summary of Results, AAAI-88, pg. 122-127.

[34] Kumar, V. and Kanal, L.N. (1984), Parallel branch and bound formulations for
and/or tree search, IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, PAMI-6:768-778.

34

[35]

[36]

37]

[38]

[39]

[10]

[41]

[42]

[43]

Kelly, M.A. and Seviora, R.E. (1987), A Multiprocessor Architecture for Production
System Matching, AAAI-87, pp.36-41.

Kelly, M.A. and Seviora, R.E. (1989), An Evaluation of DRete on Cupid for OPS5
Matching, IJCAI-89, pp.84-89.

Kowalik, J.S. (ed.) (1988), Parallel Computation and Computers for Artificial In-

telligence, Kluwer Academic Press, Norwell, Ma.

Krall, E.J. and McGehearty, P.F. (1986), A Case Study of Parallel Execution of
a Rule-Based Expert System, International Journal of Parallel Programming, Vol.

15, No.1.

Lesser, V.R., Fennell, R.D., Erman, [..D. and Reddy, D.R. (1975), Organization
of teh Hearsay-II speech understanding system, IFEE Transactions on Acoustics,

Speech, and Signal Processing, ASSP-23, 11-24.

Miranker, D.P. (1987), Treat: A Better Match Algorithm for AI Production Sys-

tems, AAAI-87, The National Conference on Artificial Intelligence.

Miranker, D.P., Kuo, C-M, Browne, J.C. (1989), Compiling Parallelism Among
Rules, IJCAI89 Workshop on Parallel Algorithms for Machine Intelligence and Pat-

tern Recognition, Detroit, August.

Murray, K.E. (1989), Umass Concurrent Common Lisp: An Extensible and Effi-
cient Concurrent Programming Language, COINS Technical Reprot 89-90, Dept.

of Computer and Information Science, University of Massachusetts, Amherst, Ma.

Moon, D., Stallman, R.M. and Weinreb, D. (1983), Lisp Machine Manual, A.L

Laboratory, Massachusetts Institute of Technology.

35

[44] Nii, H.P. (1986), CAGE and POLIGON: Two IFrameworks for Blackboard-Based
Concurrent Problem Solving, Technical Reprot KSL-86-41, Stanford University,

Knowledge Systems Laboratory, Stanford, Ca.

[45] Oflazer, K. (1984), Partitioning in Parallel Processing of Production Systems, Pro-
ceedings 1984 International Conference Parallel Processing, IEEE Computer Soci-
ety Press, pp. 92-100.

[46] Rich, E. (1983), Artificial Intelligence, McGraw-Hill, N.Y.

[47] Shapiro, E. (1986), Concurrent Prolog: A Progress Report, IEEE Computer, Au-

gust, pp. 44-58.

[48] Schmolze, J.G. (1988), An Asynchronous Parallel Production System with Dis-
tributed Facts and Rules, Proceedings of AAAI-88 Workshop on Parallel Algorithms

for Machine Intelligence and Patiern Recognition, St. Paul, Minn.

[49] Schwetman, . (1986), CSIM Reference Manual, Microelectronics and Computer

Technology Corporation, Austin, TX.

[50] Siler, W. and Tucker, D. (1989), Patterns of Inductive Reasoning in a Parallel

Expert System, International Journal of Man-Machine Studies, V. 30, pp. 113-120.

[51] Smith, B.T. and Middleton, D. (1988), Iixploiting fine-grained parallelism in Pro-

duction Systems, NASA-Langley Research Center Report.

[52] Sobell, M.G. (1984), A Practical Guide to the Unix System, Benjamin-Cummings,

Reading, Ma.

[53] Stolofo, S.J. (1984), Ilive Parallel Algorithms {or Production System Execution on
the DADO Machine, AAAI-84, The National Conference on Artificial Intelligence.

36

[54]

[55]

[56]

[59]

Tinker, P.A. (1988), Performance of an OR-Parallel Logic Programming System,
International Journal of Parallel Programming, Vol. 17, No. 1., pp. 59,92.

Turksen, L.B. (1984), Production Control with a Linguistic Rule-Based System,

First International Conference on Fuzzy Information Processing, Kauai, Hawaii.

Umeyama, S. and Tamura, K. (1983), A Parallel Execution Model of Logic Pro-
grams, In the 10* Annual International Symposium on Computer Architecture,

IEEE and ACM, June.

Van Melle, W., Scott, A., Bennet, J., and Peairs, M. (1981), The Emycin Manual,
Tech. Rep STAN-CS-81-885, Stanford University, Stanford, Ca.

Walmer, L.R. and Thompson, M.R. (1988), A Programmer’s Guide to the Mach
User Invironment, Department of Computer Science, Carnegie-Mellon University,

Pittsburg.

Wilensky, R. (1986), Common LISPcraft, W.W. Norton, N.Y.

37

